countable paracompactness - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

countable paracompactness - traducción al ruso

TOPOLOGICAL SPACE IN WHICH EVERY OPEN COVER HAS AN OPEN REFINEMENT THAT IS LOCALLY FINITE
Paracompact; Paracompactness; Fully normal space; Fully T4 space; Fully normal Hausdorff space; Paracompact Hausdorff space; Paracompact topological space; Paracompactness criteria; Countably paracompact; Hereditarily paracompact space; Countably paracompact space; Subordinate partition of unity; Paracompact manifold; Countable paracompactness

countable paracompactness         

математика

счётная паракомпактность

countably paracompact         

математика

счётно паракомпактный

countably paracompact space         
счетно паракомпактное пространство

Definición

countable
<mathematics> A term describing a set which is isomorphic to a subet of the natural numbers. A countable set has "countably many" elements. If the isomorphism is stated explicitly then the set is called "a counted set" or "an enumeration". Examples of countable sets are any finite set, the {natural numbers}, integers, and rational numbers. The {real numbers} and complex numbers are not [proof?]. (1999-08-29)

Wikipedia

Paracompact space

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.

The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracompact spaces may not be paracompact. Compare this to Tychonoff's theorem, which states that the product of any collection of compact topological spaces is compact. However, the product of a paracompact space and a compact space is always paracompact.

Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.

¿Cómo se dice countable paracompactness en Ruso? Traducción de &#39countable paracompactness&#39 al